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Abstract

This paper introduces a novel approach for rapidly computing a very large number of geodesics on a smooth surface.
The idea is to apply the recently developed phase flow method [L. Ying, E.J. Candès, The phase flow method, J. Comput.
Phys., to appear], an efficient and accurate technique for constructing phase maps for nonlinear ordinary differential equa-
tions on invariant manifolds, which are here the unit tangent bundles of the surfaces under study. We show how to rapidly
construct the whole geodesic flow map which then allows computing any geodesic by straightforward local interpolation,
an operation with constant complexity. A few numerical experiments complement our study and demonstrate the effective-
ness of our approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The problem

This paper introduces a new method for rapidly computing the geodesic flow on smooth and compact sur-
faces. Suppose that Q is a smooth surface, then the geodesics of Q obey certain types of differential equations,
which may take the form
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y :¼ (x,p) where x is a running point on the surface Q, and p is a point in the tangent space so that p(t) is the vector
tangent to the geodesic at x(t). Standard methods for solving such ordinary differential equations (ODEs) are
based on local ODE integration rules such as the various Runge–Kutta methods. Typically, one chooses a small
step size s and makes repeated use of the local integration rule. If one wishes to integrate the equations up to time
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T, the accuracy is generally of the order of sa – a is called the order of the local integration rule – and the com-
putational complexity is of the order of T/s, i.e. proportional to the total number of steps.

In many problems of interest, one would like to trace a large number of geodesics. Expressed differently,
one would like to integrate the system (1.1) for many different initial conditions. Examples arising from geo-
metric modeling and computational geometry include mesh parameterization, the segmentation of a surface
into several components, shape classification [6], and the interpolation of functions defined on surfaces [18].
The range of applications are of course not limited to computer graphics and spans many areas of science
and engineering – especially computational physics and computational mechanics. Consider an arbitrary
dynamical system with holonomic constraints. Then it is often the case that the particle trajectories are the
geodesics of the smooth manifold defined by these constraints. In the theory of general relativity, the trajectory
of a free particle is the spatial projection of a geodesic traced on the curved four-dimensional space–time man-
ifold. In order to understand the underlying dynamics of these physical problems, one often calculates a large
number of trajectories which are nothing else than geodesics.

An interesting application which involves computing a large number of geodesics and will be studied in this
paper comes from the field of high-frequency wave propagation. Suppose that a smooth body is ‘‘illuminated’’
by an incoming planar wave with an arbitrary direction of propagation. We wish to compute the scattered
wavefield. Now the geometric theory of diffraction [8] asserts that straight diffraction rays are emitted from
the so-called creeping rays. A creeping ray is a geodesic curve on the scatterer which starts from a point on
the shadow line and whose initial tangent is parallel to the orientation of the incoming planar wave. To com-
pute the scattered field then, one needs to trace as many geodesics as there are points on the various shadow
lines, see Section 2.4 for more details.

In many of these problems, standard methods tracing geodesic curves one by one may be computationally
very expensive, and in this paper we introduce a fast and accurate method for computing the whole geodesic
flow map over the surface. Our strategy is built upon the phase flow method [19], a newly established method
for solving system (1.1) which we review next.
1.2. The phase flow method

Suppose that we are given the system of ordinary differential equation (1.1), where the vector field F:
Rd! Rd is assumed to be smooth. For a fixed time t, the map gt: Rd! Rd defined by gt(y0) = y(t,y0) is called
the phase map, and the family {gt, t 2 R} of all phase maps – which forms a one parameter family of diffeo-
morphisms – is called the phase flow. A manifold M � Rd is said to be invariant if gt(M) � M. In many situ-
ations, we are interested in the restriction of the phase flow on an invariant manifold.

We wish to compute the solutions y(T,y0) of the system (1.1) with many initial conditions y0. Rather than
integrating the system one ray at a time, we integrate (1.1) for all the initial conditions at once. The approach
consists of two steps:

� First, construct an approximation ~gT to the phase map gT at time T.
� Second, for each y0, the solution y(T,y0) is calculated by simply evaluating ~gT ðy0Þ.

The main difficulty is in the construction of ~gT . Specifically, we need (1) to construct ~gT efficiently and accu-
rately and (2) to represent ~gT in a way allowing fast evaluation, which is equally important. This is exactly
what the phase flow method achieves.

Algorithm 1 (The phase flow method [19]).

1. Parameter selection. Select a grid size h > 0, a time step s > 0, and an integer constant S P 1 such that
B = (T/s)1/S is an integer power of 2.

2. Discretization. Select a uniform or quasi-uniform grid Mh � M of size h.
3. Burn-in. Compute ~gs. For y0 2Mh, ~gsðy0Þ is calculated by applying the ODE integrator (single time step of

length s). Then construct a local interpolant based on these sampled values, and for y0 62Mh, define ~gsðy0Þ
by evaluating the interpolant at y0.
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4. Loop. For k = 1, . . . ,S, evaluate ~gBks. For y0 2Mh, ~gBksðy0Þ ¼ ð~gBk�1sÞ
ðBÞðy0Þ where f (2) = f� f, f (3) = f� f� f

and so on. Construct a local interpolant based on these sampled values, and for y0 62Mh, define ~gBksðy0Þ
by evaluating the interpolant at y0.

5. Terminate. The algorithm terminates at k = S since by definition BSs = T and hence ~gT ¼ ~gBSs. The approx-
imate solution ~yðT ; y0Þ is equal to ~gT ðy0Þ.

The method relies on three components which are application dependent, namely, the ODE integration
rule, the local interpolation scheme, and the selection of the discrete grid Mh, all of which will be fully specified
in concrete examples a little later.

The phase flow essentially exploits two important points. The first is the continuous dependence of the solu-
tion at time T on the initial condition, i.e. for each t, gt(y0) is a smooth function of y0. This enables the accurate
approximation of gT from its values on the grid Mh. The second is the group structure of the phase flow
{gt, t 2 R}, gtþt0 ¼ gt � gt0 , which holds since (1.1) is an autonomous system. The group property allows a sys-
tematic reuse of earlier computations – much like the repeated squaring argument which computes large pow-
ers of a matrix. The obvious advantage is that one can of course construct large-time phase maps with just a
few iterations.

In practice, when the time T is large, gT may become quite oscillatory while remaining smooth. The version
below is usually more efficient and practical for large times.

Algorithm 2 (The phase flow method: modified version [19]).

1. Choose T0 = O(1) such that gT 0
remains non-oscillatory and pick h so that the grid is sufficiently dense to

approximate gT 0
accurately. Assume that T = mT0, where m is an integer.

2. Construct ~gT 0
using Algorithm 1.

3. For any y0, define ~gT ðy0Þ by ~gT ðy0Þ ¼ ð~gT 0
ÞðmÞðy0Þ.

The main theoretical result in [19] is that the phase flow method is provably accurate.

Theorem 1 (cf. [19]). Suppose that the ODE integrator is of order a and that the local interpolation scheme is

of order b P 2 for sufficiently smooth functions. We shall also assume that the linear interpolation rule has

h-independent L1 norm on continuous functions. Define the approximation error at time t by
et ¼ max
b2M
jgtðbÞ � ~gtðbÞj: ð1:2Þ
Algorithms 1 and 2 enjoy the following properties:

(i) The approximation error obeys
eT 6 C � ðsa þ hbÞ ð1:3Þ

for some positive constant C > 0.
(ii) The complexity is O(s�1/S Æ h�d(M)) where d(M) is the dimension of M.

(iii) For each y 2M, ~gT ðyÞ can be computed in O(1) operations.
(iv) For any intermediate time t = ms 6 T where m is an integer, one can evaluate ~gtðyÞ for each y 2M in

O(log(1/s)) operations.

1.3. General strategy

To make things concrete, we suppose that Q is a two-dimensional orientable surface embedded in R3

although everything extends to low dimensional surfaces in n dimensions. Suppose the smooth surface Q is
parameterized by an atlas {(Qa,/a):a 2 I} (a family of charts) where the collection of open sets Qa covers
Q, and each /a maps Qa into R2. Given two vector fields X and Y defined in a neighborhood of a point
q 2 Q, introduce the covariant derivative $XY at q defined by
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rX Y jq ¼ DX Y jq � hDX Y jq; nin; ð1:4Þ
where DXY is the directional derivative of Y in the direction of X and n is the unit vector normal to the surface
at the point q. The covariant derivative is the tangential component of the directional derivative and lies in the
tangent plane of Q at q. A curve c(t) is called a geodesic on Q if rc0c0 ¼ 0 for all t in the domain of definition.
Before we move on, we would like to bring up an important point: although the definition of the covariant
derivative requires X and Y to be defined in a neighborhood of q, c 0 is only defined along the curve c(t). How-
ever, we can justify the definition by smoothly extending c 0 in a neighborhood of the curve c(t) in an arbitrary
fashion, and proving that the quantity rc0c0 does not depend upon this extension.

In terms of local coordinates xi, i = 1,2, in each chart, a geodesic is a solution of the system of nonlinear
ordinary differential equations
d2xi

dt2
þ
X

16j;k62

Ci
jk

dxj

dt
dxk

dt
¼ 0; i 2 f1; 2g; ð1:5Þ
where Ci
jk is the so-called Christoffel symbol. The geodesic equations (1.5) are ‘‘extrinsic’’ in the sense that they

depend upon the choice of the local coordinate system. We point the reader to [10] (Chapter 4) for their der-
ivation and for the definition of the Christoffel symbol.

The second-order geodesic equations may also be formulated as a first order ODE system defined on the
tangent bundle TQ. The phase flow defined by this first order ODE system is often called the geodesic flow.
An obvious invariant manifold is the whole tangent bundle TQ. However, since the geodesic flow preserves
the length of a tangent vector, the unit tangent bundle T1Q, which contains all the unit-normed tangent
vectors is a manifold of smaller dimension and is also invariant. (The behavior of non-unitary tangent vec-
tors can be obtained by rescaling the time variable t.) All of this is detailed in Section 2, where we will
choose to work with an ‘‘intrinsic’’ first order ODE system which is conceptually simpler and which we will
derive explicitly.

We then follow Algorithm 2 to construct the geodesic flow map gT 0
on the invariant manifold T1Q

where T0 is O(1). The discretization of the invariant manifold M = T1Q and the local interpolation scheme
are both defined with the help of the atlas {(Qa,/a)} so that the interpolation grid is a standard Cartesian
grid. The details of the construction are given in Section 2.2. Once gT 0

is available, the computation of any
geodesic curve is obtained by repeatedly applying gT 0

– with each application having O(1) computational
complexity.

1.4. Related work and contributions

As emphasized earlier, geodesic computations arise in many applications and various solutions have been
proposed in the literature. A frequently discussed approach consists in representing the surface with a piece-
wise linear triangle mesh. The problem of computing geodesics is now reduced to that of tracing straight paths
on a triangle mesh. Several algorithms [3,13,17] have been developed to date by the computational geometry
community in this setup. Another popular solution regards the geodesic distance as the viscosity solution of
the eikonal equation defined on the surface. This observation allows the extension of the fast marching
method [16] to triangle meshes, see [9]. An extension is described in [12] where the idea is to approximate
the geodesic distance on the surface with the Euclidean distance computed in a ‘‘band’’ around the surface,
which enables the use of fast marching method on Cartesian grids.

Our approach is markedly different from these earlier contributions in several ways. The first difference
concerns the surface representation. Although the piecewise linear triangle mesh is a powerful tool to rep-
resent surfaces, it only provides a second-order approximation of the surface under study (it may just be
used to get a first-order approximation of the tangent plane for example). However, geodesic computa-
tions are governed by the curvature of the surface, and straight paths on triangle meshes are often poor
approximations of the real geodesics. In contrast, our algorithm works directly on smooth surfaces instead
and produces geodesic curves which are provably accurate. The second difference concerns the output of
the computation. There are often more than one geodesics connecting two points on a smooth surface. In
most of the aforementioned papers, the algorithm returns the geodesic with the shortest distance. Our
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approach can return all the geodesics which have length less than T. This is essential in some important
applications, which include the problem of creeping rays we will detail in the next section. The third
and last difference concerns precomputations. Most of the existing techniques precompute the geodesic
(distance) information from a single source point. This information obviously needs to be recomputed
when one is interested in geodesics starting from a different source. Instead, we compute the whole phase
map, which includes all the information for geodesics with arbitrary initial points and arbitrary initial
orientations.

The recent work by Motamed and Runborg [14] on computing creeping rays in high-frequency scatter-
ing is similar in spirit to our approach on these three points. However, while our approach based on the
phase flow method computes the geodesic map at a fixed time T, their Eulerian-type algorithm extends a
different method in [5] to efficiently calculate an ‘‘exit’’ function which involves the phase maps at different
times.

2. Fast geodesic flow computations

This section develops our approach for computing the geodesic flow on T1Q, and we will assume that the
smooth compact surface Q � R3 is the zero level set of a smooth function F: R3! R, i.e. Q = {x:F(x) = 0}.
This is a useful assumption for getting simple equations but as we have pointed out earlier, the method does
not depend upon this assumption (we just need to be able to derive the equations of the geodesic flow).

2.1. The geodesic flow equations

Letting TxQ be the tangent space of Q at a point x, the geodesic curves obey the differential equations
below.

Theorem 2. Suppose x0 2 Q, p0 2 T x0
Q and jp0j = 1. The geodesic with initial point x0 and tangent p0 is the

integral curve of the system
dx

dt
¼ p;

dp

dt
¼ �hp;r

2F pi
jrF j2

rF ; ð2:1Þ
and with initial conditions x(0) = x0, p(0) = p0.

Proof. Let us first check that, for each t > 0, the following three conditions hold: (i) dp/dt is parallel to $F; (ii)
p is in the tangent space, i.e. Æp,$Fæ = 0; and (iii) jpj = 1. The first condition follows from the second equation
in (2.1). For (ii), note that the time derivative of Æp,$Fæ obeys
d

dt
hp;rF i ¼ d

dt
p;rF

� �
þ p;r2F

dx

dt

� �
¼ �hp;r

2F pi
jrF j2

hrF ;rF i þ hp;r2F pi ¼ 0:
At t = 0, Æp(0),$F(x(0))æ = 0 since p0 2 T x0
Q, which implies Æp,$Fæ = 0 for each t > 0. Finally, we compute
d

dt
hp; pi ¼ 2

d

dt
p; p

� �
¼ �2

hp;r2F pi
jrF j2

hrF ; pi ¼ 0;
where we have used (ii) in the last step. It follows from jp0j2 = 1 that p obeys (iii) for all t’s.
It follows from (ii) that
d

dt
F ðxðtÞÞ ¼ hp;rF i ¼ 0:
Since F(x(0)) = 0, F(x(t)) is equal to zero for all t, which shows that the curve x(t) belongs to Q at all times.
The third condition jpj = 1 implies that Dpp = dp/dt. It follows from the definition of a geodesic in Section 1.3
that we need to show $pp = 0 in order to show that x(t) is a geodesic curve. Since dp/dt is parallel to the nor-
mal direction $F and $pp is the tangent component of Dpp = dp/dt then, by definition, $pp is equal to zero.
The proof is complete. h
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It is a well known fact that the shortest path between two points on a smooth manifold is a geodesic (up to
reparameterizations). Given a positive function c(x) on Q, one can also define the weighted geodesic between
two points x0 and x1 as the curve on the surface Q minimizing

R x1

x0
1=cðxÞ ds where s is the arclength

parameterization.

Corollary 1. Suppose x0 2 Q, p0 2 T x0
Q and jp0j = 1. The weighted geodesic with initial value (x0,p0) is the

integral curve of
dx

dt
¼ cðxÞ p

jpj ;
dp

dt
¼ �ðrc� hrc; ninÞjpj � c

hp;r2F pi
jrF j2

rF
jpj ; ð2:2Þ
where nðxÞ ¼ rF ðxÞ
jrF ðxÞj is the surface normal at x.

We briefly sketch why this is correct. Fermat’s principle [2] asserts that a weighted geodesic curve is an inte-
gral curve of the Hamiltonian equations generated by the Hamiltonian H(x,p) = c(x)jpj with the additional
constraint that x 2 Q. It then follows from the d’Alembert principle [1] that the Hamiltonian equations of
H(x,p) are of the form
dx

dt
¼ cðxÞ p

jpj ;
dp

dt
¼ �rcðxÞjpj þ kn; ð2:3Þ
where k is a scalar function. The relationship Æp,$Fæ = 0 is then used to derive a formula for k. We have
d

dt
hp;rF i ¼ h�rcjpj þ kn;rF i þ hp;r2F pi c

jpj ¼ 0;
and rearranging the terms, we obtain
k ¼ ðrc � nÞjpj � hp;r
2F pi

jrF j
c
jpj :
Substitution into (2.3) gives (2.2) as claimed. Note that with u = p/jpj, we can also use the reduced Hamilto-
nian system
dx

dt
¼ cðxÞu; du

dt
¼ �rcþ hrc; ninþ hrc; uiu� c

ur2F u

jrF j n: ð2:4Þ
This observation is useful because it effectively reduces the dimension of the invariant manifold.

2.2. Discretization, parameterization, and interpolation

We now apply the phase flow method (Algorithms 1 and 2) to construct the phase map gT of the geodesic
flow defined by (2.1) and (2.4). We work with the invariant, compact and smooth manifold M = T1Q, where
T1Q is the unit tangent bundle of Q (the smoothness is inherited from that of Q):
T 1Q ¼ fðx; pÞ : x 2 Q; hp;rF ðxÞi ¼ 0; jpj ¼ 1g � R6:
Note that M is a three-dimensional manifold.
As remarked earlier, we need to specify the discretization of M, the (local) interpolation scheme, and the

ODE integration rule.
Discretization. We suppose Q is parameterized by an atlas {(Qa,/a)} (a family of charts) where the collec-

tion of open sets Qa covers Q, and each /a maps Qa into R2. Assume without loss of generality that
/a(Qa) = (�d, 1 + d)2 for some fixed constant d > 0, and that Q ¼

S
a/
�1
a ð½0; 1�

2Þ (the convenience of this
assumption will be clear when we will discuss the interpolation procedure). Our atlas induces a natural param-
eterization of M: put Ma :¼ T1Qa for short, and for each a, define Ua: Ma! (�d, 1 + d)2 · S1 by
Uaðx; pÞ ¼ /aðxÞ;
T/aðxÞ � p
jT/aðxÞ � pj

� �
; x 2 Qa; p 2 T 1

xQa:
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Since /a is one to one and p is non-degenerate, the map Ua is always one to one and smooth. T/a(x), the tan-
gent map of /a at x, is a linear mapping from the tangent space TxQa into R2, which may be defined as follows:
let c(t) be a curve on the surface Qa with c(0) = x; then c 0(0) 2 TxQa (and conversely, every tangent vector is
the derivative of a curve) and we set T/a(x) Æ c 0(0) = (/a�c) 0(0).

With this in place, we now introduce a Cartesian grid Gh on (�d,1 + d)2 · S1 with grid spacing h 6 d/2. For
each a, the grid Gh may be lifted onto Ma by the inverse of Ua, and our discretization grid Mh is simply the setS

aU
�1
a Gh.

Interpolation. Suppose that f:M!M is a smooth function – for us, the phase map. We wish to construct an
interpolant from the values of f on the grid Mh. The key point here is that we shall actually construct the inter-
polant in the parameter space (�d, 1 + d)2 · S1. Introduce fa:Ma!M, the restriction of f to Ma. Because Ua is
a smooth map,
Fig. 1.
obtain
ua :¼ faU
�1
a : ð�d; 1þ dÞ2 � S1 ! M � R6
is a smooth map between Euclidean domains, see Fig. 1b. There is a one-to-one correspondence between the
values of f on Mh and those of ua on Gh, and so all we need is to construct, for each a, an interpolant for a
smooth (although non-periodic) function defined on a Cartesian grid. This is accomplished by interpolation
via tensor product cardinal B-splines. The endpoint conditions are specified as follows: first, since ua is periodic
with respect to S1, the periodicity condition is invoked in this variable; second, ua is in general non-periodic
with respect to (0, 1)2, and we use the not-a-knot condition [4] for these variables. We note that the construc-
tion of the spline interpolant requires inverting sparse matrices with a small diagonal band, an operation
which has linear computational complexity in terms of the number of the grid points. From now on, we denote
by ~ua the interpolant constructed as above.

Suppose now that we want to evaluate the value of f at a point m = (x,p) 2M. We need to specify which ~ua

to use since x may be ‘covered’ by multiple charts Qa. Although each ~ua with x 2 Qa will produce close results
since each interpolant is constructed from the same values of f on the grid Mh, a careful selection of the chart a
will nevertheless dramatically improve the accuracy. Our selection is guided by the following important obser-
vation: when the not-a-knot condition is used, the interpolation error at points which are at least two grid-
points away from the boundary is considerably lower than that at points which are closer to the boundary.
This is where our assumption becomes handy. Since Q ¼

S
a/
�1
a ð½0; 1�

2Þ and h 6 d/2, we are guaranteed that
for any x 2 Q, one can choose a(x) such that /a(x)(x) is at least ‘two grid points away’ from the boundary. The
value of f(x) is then approximated in an obvious fashion, namely, by ~uaðxÞðUaðxÞðx; pÞÞ.

ODE integration rule. We work with the 4th order Runge–Kutta method [7] as a local integration rule.
Now, even though any integral curve of (2.1) remains on the surface Q the numerical solution will surely devi-
ate from the surface because of the integration error. In order to ensure that the approximate phase map gt(Æ)
maps M = T1Q to itself, we impose an extra projection step which snaps a point (x0,p0) 2 R6 close to M back
onto M. We could for instance find the point x 2 Q which is closest to x0, i.e. the solution to
φα

Qα Mα

Φα

(−δ,1+δ)
2

(−δ,1+δ)
2
x S

1

Q M

Mα

Φα

(−δ,1+δ)
2
x S

1

M M
fα

fα Φα
−1

(a) Schematic representation of the parameterization of the surface Q and of its unit tangent bundle T1Q. The discrete grid on Ma is
ed by lifting the lattice Gh � (�d, 1 + d)2 · S1. (b) Construction of the local interpolant.
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min
fx:F ðxÞ¼0g

jx� x0j2:
Standard iterative techniques for this are discussed in [15] (x0 can naturally serve as the initial guess). Because
x0 is always very close to M, we find that the following simple algorithm works quite well: using x = x0 as an
initial guess, we apply the following two operations iteratively:
x x� F ðxÞ
jrF ðxÞj nðxÞ;

x x0 � hx0 � x; nðxÞinðxÞ
with nðxÞ ¼ rF ðxÞ
jrF ðxÞj. The first operation moves x closer to Q while the second one aligns x � x0 with n(x). We

stop iterating when x obeys the two conditions below:
jF ðxÞj
jrF ðxÞj 6 e and

x0 � x

jx0 � xj ; nðxÞ
� �����

���� 6 e;
where e is a prescribed accuracy parameter. In practice, we choose e to be comparable to the interpolation
error, namely of size O(hbs). This allows us to assimilate the projection error with the interpolation error,
which implies that the error analysis of the phase flow method remains valid as is. Since (x,p) is always close
to M, it usually takes only 3–4 iterations even when e is as small as 10�10. In a second step, we then project p
onto the plane orthogonal to $F(x) (and apply renormalization to keep a unit-length vector). This projection
step is also invoked during the interpolation wherever the interpolant deviates from the invariant manifold M.

2.3. Numerical results

This section presents several numerical results. The proposed method is implemented in Matlab and all the
computational results reported here were obtained on a desktop computer with a 2.6 GHz CPU and 1 GB of
memory. It is expected that a careful implementation in C or Fortran would typically offer a significant
improvement in terms of computation time and, therefore, we focus on the speedup over the standard ray trac-
ing methods. We use Algorithm 2 (the modified version of the phase flow method) to construct the geodesic
flow. In every example, we set T0 = 1/8 and s is chosen to be 2�10. We use tensor product cubic splines to
interpolate the phase map gt(Æ). The accuracy parameter e in the projection step is set to be 10�10. To estimate
the numerical error, we proceed as follows: we select N points {mi} randomly from M; the ‘‘exact’’ solutions
Example 1: (a) discretization grid on Q, (b) and (c) geodesic flow; the white curves are the geodesics while the black curves are the
at a fixed distance from the initial point. Note the fish-tail pattern in (c).
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gT 0
ðmiÞ are computed with Matlab’s adaptive ODE solver with a prescribed error equal to 10�9; the numerical

error is estimated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1jgT 0
ðmiÞ � ~gT 0

ðmiÞj2=N
q

. In all these examples, N = 200.

Example 1. The surface Q is an ellipsoid given by
Table
The er

Discre

(8,32)
(16,64
(32,12
(48,19

The ro
each d

Fig. 3.
circle o
x2

a2
þ y2

b2
þ z2

c2
¼ 1
with a = 1.2 and b = c = 0.8. The atlas consists of six charts, each one corresponding to one of the six prin-
cipal axes: ±x, ±y and ±z.

In this example, the parameter domain (�d, 1 + d) of each chart is discretized with a Cartesian grid of size
16 · 16, see Fig. 2a for a plot of the discretization grid on Q. We discretize S1, which parameterizes the unit
tangent directions, with 64 equispaced points. Constructing ~gT 0

takes about 100 s and the error is around
3 · 10�6.

We then use ~gT 0
to rapidly compute the geodesics starting from an arbitrary point on the surface until

T = 3.125, see Fig. 2b and c. The black curves are solutions at time kT0 for k = 1,2, . . ., 25. Each one is
resolved with 1024 samples each. The computation of these geodesics take 0.8 s, offering a speedup factor of
50 over standard adaptive ODE solvers.

Table 1 reports the relationship between the discretization size, the time T0 and the numerical error of the
approximate phase map. As suspected, the numerical error increases when T0 increases and as the mesh size
gets coarser. Note that for a fixed mesh size, the error increases about linearly.
1
ror of the approximate phase map for different choices of discretization grids and T0

tization vs. T0 0.03125 0.0625 0.125 0.25

3.088e � 05 4.917e � 05 1.538e � 04 2.385e � 04
) 8.473e � 07 1.271e � 06 2.860e � 06 6.195e � 06
8) 8.993e � 08 9.848e � 08 2.597e � 07 3.295e � 07
2) 1.421e � 08 2.452e � 08 7.980e � 08 1.390e � 07

ws indicate the number of gridpoints used to sample the invariant manifold M = T1Q, i.e. (16,64) means that 16 points are used for
imension of the chart domain and 64 points for the unit tangent direction. Each column corresponds to a different value of T0.

Example 2. Two different families of geodesics. (a) Geodesics starting from a single point. (b) Geodesics starting from the minor
f the torus.



Fig. 4. Example 3. Weighted geodesics starting from the north pole. The velocity is here increasing with x since c(x,y,z) = 1 + x.
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Fig. 5. Example 4. Creeping rays on a ‘‘twisted’’ ellipsoid corresponding to two incident directions: (1,1,1) (first row) and (1,0,0) (second
row). The left plot shows the discretization grid on Q. The middle column shows the creeping rays on the surface of the scatterer. All the
rays are generated from the shadow line (bold curve). The right column shows the iso-phase curves in the parametric domain. The bold
curve is the shadow line.
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Example 2. The surface is here a torus obeying the equation:
0
0

0
0

z

0
0

0
0

z

Fig. 6.
disjoin
phase
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1

� 	2

þ z2 ¼ 0:52:
The atlas consists of a single chart with a parameterization given by
x ¼ 1þ 0:5 cosðhÞ cosðwÞ; y ¼ 1þ 0:5 cosðhÞ sinðwÞ; z ¼ 0:5 sinðhÞ;

with (h,w) 2 [0,2p)2. We then use a grid of size 32 · 64 to discretize (h,w) while the unit tangent direction
(parameterized by S1) is sampled with 64 evenly distributed samples. The construction of the geodesic flow
map up to T0 takes about 30 s, and the accuracy is about 2 · 10�6. Fig. 3 displays two different families of
geodesics.

Example 3. In this example, we compute the weighted geodesics on a unit sphere. We choose the velocity field
as c(x,y,z) = 1 + x. The parameterization and discretization used here are the same as those in Example 1.
Fig. 4 shows the computed geodesics starting from the north pole of the sphere.
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Example 5. Creeping rays on a torus corresponding to the incident direction (1,1,1). The shadow line (bold) is composed of two
t curves. Each row is associated with a single shadow curve. The left figures show the creeping rays. The right figures show the iso-
curves in the (h,/) parametric domain (the bold curve is the shadow line).
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2.4. Creeping rays

We finally apply our method to compute creeping rays on smooth scatterers and give two numerical
examples.

Example 4. The scatterer is here a ‘‘twisted’’ ellipsoid given by
x2

a2
þ ðy � d=c � cosðpzÞÞ2

b2
þ z2

c2
¼ 1;
where a = b = 1/2, c = 1 and d = 0.2. The atlas here is essentially the same as that used in Example 1. For each
chart, the parameter space (�d, 1 + d)2 is discretized with a 24 · 24 grid, while the unit circle S1 is sampled
with 96 equispaced points. The construction of the geodesic flow map up to time T0 = 1/8 takes about
280 s. The computed map ~gT 0

has accuracy about 10�5.
Fig. 5 plots the results for two different incident directions. The middle column shows the creeping rays on

the surface of the scatterer, while the right column displays several iso-phase curves, which simply are those
points (taken from different creeping rays) at a fixed travel time away from the shadow line. These iso-phase
curves are plotted with respect to the standard (h,/) (polar) coordinates used for parameterizing genus-0
surfaces.

Example 5. In this example, the scatterer is the torus used in Example 2. We plot the creeping rays associated
with the incident direction (1, 1,1). Because this surface is nonconvex and has genus 1, the shadow line has two
disconnected components. Fig. 6 plots the creeping rays starting from these two components separately.

3. Conclusion

We have shown how to use the phase flow method for computing geodesic flows on smooth and compact
surfaces. In applications where one needs to trace many geodesics, our method is considerably superior than
standard methods in terms of computational efficiency. One such application is the problem of computing
creeping rays for which our method is especially well suited. We also demonstrated that the entire approach
is numerically highly accurate.

We have presented the method in detail when the surface under study is the level set of a smooth function,
and made clear that it extends to general setups. All we need is a parameterization of the surface and differ-
ential equations governing the dynamics of the geodesic flow. What is perhaps less clear is whether one could
extend our approach to handle surfaces represented by triangle meshes or point clouds. Consider a triangle
mesh for example. We could of course interpolate the mesh and trace geodesics on the smooth interpolated
surface. If one insists, however, on tracing geodesics on the triangle mesh, the essential step towards extending
our ideas would be the design of accurate local interpolation schemes which are as precise as possible on piece-
wise smooth objects [11].
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